Francesco Alesiani
Open Menu
Close Menu
Bio
Papers
News
Publications
Shujian Yu
,
Francesco Alesiani
(2022).
Scalable, accurate and reliable measure of variable dependence and independence, and utilization of the measure to train a neural network
.
Cite
Shujian Yu
,
Francesco Alesiani
,
Wenzhe Yin
,
Robert Jenssen
,
Jose C Principe
(2022).
Principle of Relevant Information for Graph Sparsification (Supp. Material)
.
Cite
Shujian Yu
,
Francesco Alesiani
,
Wenzhe Yin
,
Robert Jenssen
,
Jose C Principe
(2022).
Principle of relevant information for graph sparsification
.
Uncertainty in Artificial Intelligence
.
Cite
Makoto Takamoto
,
Timothy Praditia
,
Raphael Leiteritz
,
Daniel MacKinlay
,
Francesco Alesiani
,
Dirk Pflüger
,
Mathias Niepert
(2022).
Pdebench: An extensive benchmark for scientific machine learning
.
Advances in Neural Information Processing Systems
.
Cite
Ammar Shaker
,
Francesco Alesiani
,
Shujian Yu
(2022).
Modular-relatedness for continual learning
.
International Symposium on Intelligent Data Analysis
.
Cite
Francesco Alesiani
,
Makoto Takamoto
,
Mathias Niepert
(2022).
HyperFNO: Improving the generalization behavior of Fourier Neural Operators
.
NeurIPS 2022 Workshop on Machine Learning and Physical Sciences
.
Cite
Bhushan Kotnis
,
Kiril Gashteovski
,
Julia Gastinger
,
Giuseppe Serra
,
Francesco Alesiani
,
Timo Sztyler
,
Ammar Shaker
,
Na Gong
,
Carolin Lawrence
,
Zhao Xu
(2022).
Human-centric research for nlp: Towards a definition and guiding questions
.
arXiv preprint arXiv:2207.04447
.
Cite
Francesco Alesiani
,
Gulcin Ermis
,
Konstantinos Gkiotsalitis
(2022).
Constrained clustering for the capacitated vehicle routing problem (cc-cvrp)
.
Applied artificial intelligence
.
Cite
Francesco Alesiani
(2022).
BiGrad: Differentiating through bilevel optimization programming
.
The AAAI-22 Workshop on Adversarial Machine Learning and Beyond
.
Cite
Francesco Alesiani
,
Shujian Yu
(2021).
Methods and systems for graph approximation
.
Cite
« Previous
Next »